Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet Microbe ; 4(5): e369-e378, 2023 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2306406

RESUMO

Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/química , Anticorpos Antivirais , Proteínas Recombinantes/genética
2.
The Lancet Microbe ; 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-2288507

RESUMO

Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.

3.
Viruses ; 14(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2090366

RESUMO

The recently circulating SARS-CoV-2 Omicron BA.5 is rampaging the world with elevated transmissibility compared to the original SARS-CoV-2 strain. Immune escape of BA.5 was observed after treatment with many monoclonal antibodies, calling for broad-spectrum, immune-escape-evading therapeutics. In retrospect, we previously reported Kansetin as an ACE2 mimetic and a protein antagonist against SARS-CoV-2, which proved potent neutralization bioactivity on the Reference, Alpha, Beta, Delta, and Omicron strains of SARS-CoV-2. Since BA.5 is expected to rely on the interaction of the Spike complex with human ACE2 for cell entry, we reasonably assumed the lasting efficacy of the ACE2-mimicking Kansetin for neutralizing the new SARS-CoV-2 variant. The investigation was accordingly performed on in vitro Kansetin-Spike binding affinity by SPR and cell infection inhibition ability with pseudovirus and live virus assays. As a result, Kansetin showed dissociation constant KD and half inhibition concentration IC50 at the nanomolar to picomolar level, featuring a competent inhibition effect against the BA.5 sublineage. Conclusively, Kansetin is expected to be a promising therapeutic option against BA.5 and future SARS-CoV-2 sublineages.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Inibidores Enzimáticos/farmacologia
5.
J Chem Inf Model ; 60(12): 5735-5745, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1065777

RESUMO

The emergence of the new coronavirus (nCoV-19) has impacted human health on a global scale, while the interaction between the virus and the host is the foundation of the disease. The viral genome codes a cluster of proteins, each with a unique function in the event of host invasion or viral development. Under the current adverse situation, we employ virtual screening tools in searching for drugs and natural products which have been already deposited in DrugBank in an attempt to accelerate the drug discovery process. This study provides an initial evaluation of current drug candidates from various reports using our systemic in silico drug screening based on structures of viral proteins and human ACE2 receptor. Additionally, we have built an interactive online platform (https://shennongproject.ai/) for browsing these results with the visual display of a small molecule docked on its potential target protein, without installing any specialized structural software. With continuous maintenance and incorporation of data from laboratory work, it may serve not only as the assessment tool for the new drug discovery but also an educational web site for the public.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Avaliação Pré-Clínica de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Software , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA